

re.tone / Mendix @ SIEMENS

September 19th, 2023

ENSO and Software Development

E N S O

| We started **10 years** ago with a **group** of **people** that are at their DNA, **tech enthusiasts**

| We aim to provide simple technology with a high level of quality and without tech boundaries

NOT JUST IN OUR INTERNAL MARKET

THAT LED TO THE CREATION OF 3 CORE STRUCTURES

NETWORK

| Created with the main focus of designing infrastructures both for ENSO and for our CUSTOMERS

NETWORK

Providing services to support our **technology** both **on PREM** and on public **CLOUD providers**

GOOGLE CLOUD AMAZON AZURE

SOFTWARE

To provide **custom** built **technology** for each project a traditional software **development team** was created

Counting with 13 developers

| Most of them **started** their career at **ENSO** and grew to a seniority level with us

| Keeping close with Universities is an advantage like Universidade de Coimbra and ISEC

STACK

- JAVA for mission critical applications
- REACT JS for web
- **REACT NATIVE** both Android and Apple IOS
- **NODE JS** for API and backend
- **PostgreSQL** for data storage
- SQL/NoSQL several other engines / project needs

CLEARCODE

And a subset of the software team found a place in the **Low code** environment.

LOW CODE

Low code **environments** like **Mendix** were a natural and unavoidable evolution that allowed:

Access to **new markets**

| Faster delivery of solutions

| Easier maintenance and evolution

WITH A MAIN DRIVEN VISION

PRODUCTS

All of the delloped work led to the arrival of successful projects and some products that we are going to address on this presentation

A product used currently by Civil Protection Services and Water Management Entities

Improve occurrence control

| Provide permanent environmental monitoring.

| Obtain **alarm signals** in alarm or alert situations

Informed and well-founded decision-making to enhance the effectiveness of emergency response and prevention measures.

360° PLATFORM

Follow your team wherever they are, from the office to the field

INCIDENTS AND RESOURCES

SENSING

INCIDENT AGGREGATOR

| Centralized incident management.

| In different GIS layers.

| Filters for tracking incidents.

| Exporting information for sending and/or archiving.

INCIDENT MANAGEMENT

Geo Reference (GIS)

Developments
Photos | Text

Categorization
According national
categories

Alerts
Several alert
levels

WorkflowManage each

occurrence state

Resources

Manage resources

Human resources

Human resources management

Buildings

Information to support emergency teams

BUILD DASHBOARDS

| Respond to environmental conditions.

| Collect information 24 hours a day, every day.

| Configure alarms.

KPI

| Monitor and detect anomalous situations

| Various **indicators** calculated 24/7

| Track the evolution of your distribution network

INTEGRATE WITH DATA LOGGERS

| Integration with existing data loggers.

| TCP SOCKET / FTP / API

NEW DATALOGGERS

| Supply | Installation | Configuration

24/7 DATA

| Wind Direction and Speed

| Temperature

| Relative Humidity

| Water Reservoir Levels

Flow Rates

Precipitation

| Among others

STATISTICS

| Variable intersection

| Configuration of variables and **time intervals** for result filtering

| Effective **control** and **audit** of weather conditions' evolution

ARCHITECTURE

| All the data gathered provides a great database for applying AI / ML methodologies and improve our product

Add Al capabilities to existing products

Targeting AI to our customers

| Selling AI just for AI is complicated

| We **identify** the **value** in **current solutions** and build new value using Al

CIVIL PROTECTION INCIDENTS

CIVIL PROTECTION INCIDENTS

TOP 3 DE TIPOLOGIAS			
QT.	CÓD.	DESCRIÇÃO	EVOLUÇÃO
163	710	Vespa Velutina	1
100	3109	Gestão de Combustível	1
71	4305	Limpeza de Via e Sinaliz	

OBJECTIVE

| predict probability of occurrences based on historic records, cross referencing it with environment data

WATER MANAGEMENT

WATER TANKS

MANAGEMENT INDICATORS

1

232L/dia PERDAS POR RAMAL (i)

0.26m3/h

PERDAS POR KM

0.52

FATOR DE PESQUISA

48L/dia =

1

184L/dia PERDAS REAIS RECUPERÁVEIS

4.78

INDICE INFRAESTRUTURAL DE FUGAS

OF GINS

FLOW MEASURING

OBJECTIVE WATER LOSS

Using data from the monitoring of the water distribution infrastructure we **cross reference incidents versus** the evolution of several significant variables like

- Minimum **night** water **loss**
- Average pressure
- | Evolution of water flow

OBJECTIVE FOR WATER LOSS

Present during the next 12 months a **differentiated solution** that, through A.I. delivers a service that can:

| Anticipate scenarios that represent failure prone infrastructures nodes

| Effectively **provides recommendations** and maintenance plans for operation teams

METHODOLOGY

EVENTS TYPOLOGY RISK

CLIENTES COM CONSUMOS ANORMAIS 2023 > IA 2024							
Contrato	Contador	ZMC	Variação	Dias em alerta	1 ↓		
C44219940	JJFK485YH	ZMC de Vila Maior	188%	12			
C83362154	NNVI44HD9	ZMC de Montemor-oVelho	171%	7			
C09884657	HD67763FK	ZMC de Barca	117%	3			
C005339509	144KJHF37	ZMC de Abrunheira	105%	3			

CONSUMOS ANORMAIS POR ZMC								
MC ↓ Alertas								
ZMC de Vila Maior	19	×	31	7	2			
ZMC de Montemor-o-Velho	12	¥	2	Ä	2			
ZMC de de Barca	7	×	31	7	2			
ZMC de Vila Abrunheira	5	7	31	7	2			

PLANNED MAINTENANCE

How **Al** can **predict** businesses and people's **behaviors**

Case Study

- Transport and networks (people, freight, services, mobility, etc.)
- Systems overwhelmingly complex
- | Simulation approaches often employed
- | Simulation (conceptual) <> Simulator (implementation)

Problem

- | Simulator can become computationally heavy
- | Single run: 5min, 10min, 20 min, 1 hour, 1 day...
- | Output behaviour hard to explore

Simple Example

Simulator with 5 discrete input dimensions:

top speed: [40, 50, 60, 70, 80]

inflow: [0 100, 500, 1000, 2000, 3000]

entries/exits: [1, 2, ..., 10]

max accel: [0.3, 0.5, 1, 1.5, 3, 3.5, 4]

lanes: [2, 3, 4, 5, 6, 7]

Full behaviour exploration: $5 \times 6 \times 10 \times 7 \times 6 = 12600$

Single run = 20 min

Full time = 12600 x 20 min = 252k minutes = 175 days!

Build a simulation AI/ML-based metamodel

Metamodel = model of a model

Simulator: more accurate, but slower, unknown function

Metamodel: less accuracy (10% error), but faster (1/10th), explicit function

Simple Example

Simulator with 5 discrete input dimensions:

[10, 20, 30, 40, 50] [-6 -5, -4, -3, -2, -1] [1, 2, ..., 10] [0, 0.5, 1, 1.5, 2, 2.5, 3] [-3.4, -1, 3, 10, 50, 100]

Full behaviour exploration: $5 \times 6 \times 10 \times 7 \times 6 = 12600$

Single run = 20 min Single metamodel run = 2 min

Full time = 12600 x 20 min = 252k minutes = 175 days **Full time** = 12600 x 2 min = 25200 minutes

~6 MONTHS

MODEL ACCESS AND INTEGRATION

- | AI/ML-based metamodel can be hard to interact with
- There is **no** universal **plug-and-play** metamodel
- | Highly tailored to each individual simulator
- Low-level implementation and domain knowledge required

USING TECHNOLOGIES LIKE **MENDIX** WILL PROVE EACH TIME MORE A VALUABLE SOLUTION, AND **AI** WILL BECOME EACH TIME **MORE** AND MORE **ACCESSIBLE**

OBRIGADO

BUILDING SIMPLICITY